Skip to Content

Tag Archive: Maple Syrup Production

  1. How to close out sugaring season on a sweet note

    Leave a Comment

    Warm weather and budding trees are clear signs the maple sugaring season is over. With nights failing to fall below freezing, the sap flow slows down. And, as the leaves begins to bud, they spur a chemical change within the tree, making the sap that continues to seep through the spiles bitter, Michigan State University Extension explained. As such, this is the time of year when maple syrup producers begin to pack up their operations and wind down for the season.

    To make sure your maple syrup operation has another great year next spring, it’s important to perform a few housekeeping tasks before the end of the season.

    1. Inspect all your equipment

    While pure maple syrup is a natural food, with its only ingredient readily available in the trunks of trees, the equipment involved is intrinsic to its production. Spiles and buckets, or a system of tubing, are necessary for collecting the sap; pans and heat sources are needed to remove gallons of excess water; and shell and tube heat exchangers are essential to achieve a desirable consistency and kill off and remove bacteria and bugs.

    At the end of sugaring season, don’t put away any equipment without a thorough inspection. Now is the time to replace any cracked, warped or rusted pieces. That way, you’ll be ready to go when the weather begins to warm up next year.

    2. Review your tappable trees

    The first step in producing high-quality maple syrup is tapping excellent trees. Take a careful walk through your sugar bush to identify any dead, diseased or damaged trees, the University of Massachusetts Extension suggested. Look closely to determine whether any trees are infested with insects. Finally, pay attention to the quality of sap each tree produces. If certain trees are producing smaller amounts of sap, or sap with an off taste, it might be time to retire them. Once you’ve determined which trees are no longer serving your operation, cut them down. Clearing your sugar bush of these trees will make room for young, healthy trees to grow faster.

    3. Keep everything clean

    The maple syrup production process is an incredibly sticky one. Starting with the sap, through the evaporation to the final pasteurization and then bottling, every piece of equipment involved in the process is susceptible to becoming coated with sugar. Additionally, since the product is procured and typically prepared outdoors, there’s always a chance of dirt, debris and bugs getting stuck to equipment. To ensure your equipment stays in top condition, and to set the stage for high-quality syrup next year, it’s important to remove the sticky ooze as well as any insects or debris. Hot water is the key ingredient for much of your cleaning work, since detergents and soaps will leave behind unwanted flavors that will inevitably make their way into next year’s batch. If you do want to use a product to further sanitize equipment, it’s best to refer to the manufacturer for advice, Pennsylvania State University Extension advised. The end of maple syrup season can be bittersweet. Once the sap flow begins to trickle to a stop and the buds come out, you know that you’ve collected all the sap you can this season. Now, you have a summer of selling delicious pure maple syrup ahead of you.

    If you find that at the end of sugaring season, you’re ready for new equipment or have questions about how to care for your shell and tube heat exchangers, reach out to the helpful heat transfer engineers at Enerquip.

  2. Maple syrup producers use shell and tube heat exchangers and membranes to improve production

    Leave a Comment

    Maple syrup is a beloved topping many people reach for when diving into a plate of pancakes or waffles. Though you’d be hard-pressed to find a person who doesn’t love this sticky-sweet condiment, syrup makers only have a short window of opportunity every year to produce this favorite flavor.

    The fleeting sugaring season

    Sugaring season begins with winter waning into spring, when the days get warm, but the nights still sink below freezing. The daily freeze-thaw cycle is what pushes sweet sap out of the trees from which the syrup is made. As soon as nighttime temperatures rise above freezing and buds begin to grow on the trees, the sap becomes bitter and unusable, thus ending sugaring season as swiftly as it began.

    Typically, sugaring season only lasts a few weeks or months, according to Discover New England. Every year is different, though. If winter should recede early, the season may begin early; if the weather warms up quickly, the season is cut short, Farming Magazine reported.

    “We’re hoping for another good season [in 2017] where we get 3 weeks or a month of good cool sugar weather,” explained Burr Morse of Morse Farm Maple Sugarworks in Montpelier, Vermont, to Farming Magazine. “We had a season back in 2012 where we had a great week of sugaring around the first part of March. Then it turned to summer for 10 days and we lost our sugaring right there. That can happen and it’s nothing anyone can predict.”

    Speeding up the sap production process

    Given the unpredictability of springtime weather, it’s crucial that maple syrup producers make every moment count during sugaring season. Different producers approach this dilemma differently. One Vermont company, The Maple Guild, invented a steam-craft system that allows the company to produce 55 gallons of syrup in just three minutes using indirect heat, as opposed to the industry standard of an hour using direct heat, according to FoodNavigator-USA.

    “Essentially, we pre-boil the syrup before it hits the main evaporators, and we do that with steam that was generated at the bottom evaporator – and we shoot air in to the top evaporator which makes the concentrate float in the steam,” explained Mike Argyelan, the CEO of The Maple Guild.

    Other companies use sanitary shell and tube heat exchangers to both pasteurize the syrup and make it less viscous and easier to bottle. Putting the product through this process also removes any insects or other contaminants that have a way of getting stuck in the sticky sap.

    Another technique is reverse osmosis, a process by which maple sap is concentrated before entering the evaporator where it becomes syrup. A research paper detailing experiments with RO on maple sap conducted at the University of Vermont Proctor Maple Research Center stated that this method can decrease the amount of time syrup spends in the evaporator, increasing both productivity and energy efficiency. Researchers compared the effects of concentrating the sap to 2, 8, 12, 15 and 21.5 percent sugar concentration and found that flavor, color and other characteristics were generally consistent across the board. ONMapleSyrup noted that by using RO, producers can reduce the number of taps needed to manufacture their syrup.

    In addition to saving time and taps, RO also reduces the need for fuel, making the syrup production process more environmentally friendly.

    Saving energy during syrup production

    Since syrup production is consolidated into a several-week-long sprint, condensed operations demand high energy spend. While more syrup producers are utilizing RO technology, there are other ways producers can save energy.

    A large amount of water needs to be removed from sap to make syrup. Because of this, the syrup-making process gives off incredible amounts of steam. The steam released provides a convenient and free heat source that producers are beginning to take advantage of.

    “Syrup manufacturers can capture the heat lost to rising steam.”

    A Forest Service Research Paper explained that by installing a shell and tube heat exchanger syrup manufacturers can capture the heat lost to rising steam and use it to preheat the sap before it reaches the evaporator. Like RO, this process will reduce the amount of time the sap needs to spend in the evaporator before it reaches the desired consistency.

    This mechanism was perfected in 1974 by George Raithby of the University of Waterloo in Ontario. Prior to Raithby’s development, the use of any equipment above the evaporator would compromise the final product because rising steam would condense on the metal surface and drip back into the open pans of syrup. Raithby used a shell and tube heat exchanger with a drip pan installed beneath it to collect the condensate. Inside the tubes, the sap could be heated from a starting temperature of about 40 degrees Fahrenheit to around 190 degrees Fahrenheit before it reaches the evaporator.

    The Forest Service conducted experiments to determine whether using a shell and tube heat exchanger to preheat the product would have any effect on the quality of the final bottle of syrup. The researchers found it did not, but pondered whether utilizing copper tubing instead of stainless steel would leave behind remnants of copper in the syrup. The researchers determined it did not after analyzing the ultimate product, though if producers are concerned about this effect, investing in a stainless steel shell and tube heat exchanger may be a smart move. Not only will it lend to consistent materials being used throughout the process, but it is also highly durable and long lasting.

    Sugaring season, short and sweet though it may be, is an important time of year for maple syrup producers and, whether they realize it or not, breakfast lovers everywhere. If you’re wondering how a new shell and tube heat exchanger or a membrane can improve your operation, reach out to the engineers at Enerquip.