Skip to Content

Tag Archive: Biofuels Distillation

  1. How shell and tube heat exchangers benefit the agriculture industry

    Leave a Comment

    Agriculture is an ever-important industry in the U.S. According to the U.S. Department of Agriculture, this sector and others related to it contributed $835 billion to the nation’s economy in 2014. Farms alone contributed $177.2 billion.

    The U.S. is home to more than 300 million people, according to the Census Bureau. For the average household, 12.6 percent of their monthly budget is dedicated to food. But agriculture is more than just our nation’s produce, meat and dairy. Agriculture also lends a hand to adjacent industries like textiles, forestry, food services and drinking places, among many others. In 2014, the agriculture industry offered 17.3 million jobs, accounting for about 9.3 percent of all employment.

    Beneficial research and development

    Though this industry holds great importance to the nation, there are many obstacles it faces. Margaret M. Zeigler, the executive director of Global Harvest Initiative explained in an article for The Hill that there are numerous challenges to the industry, including:

    • Persistent drought in agriculture-focused states like California
    • Health- and nutrition-related issues
    • Diseases that can affect livestock, poultry and crops
    • Fewer people opting to study agricultural sciences
    “Shell and tube heat exchangers ensure agricultural products are safe.”

    However, she also pointed out increased research and development can lead to a more productive industry that is able to overcome these obstacles. Zeigler noted that it was research and development efforts that grew the agricultural industry’s productivity to the point it is now. From individual farmers seeking better ways to be more productive to large-scale efforts to find solutions that can accommodate a wide range of people in agriculture, research and development has been key in pushing the industry further and making it as productive as possible.

    Shell and tube heat exchangers are critical to the ways the agriculture industry ensures its many goods are produced safely and quickly. They are heavily relied upon in the dairy industry, as well as the food, beverage and biodiesel industries.

    Dairy, food and beverages

    Generally, milks, cheeses, yogurts and other dairy products need to be pasteurized before they are available for purchase.

    Raw milk has a reputation for spreading disease. According to the Centers for Disease Control and Prevention, unpasteurized milk is 150 times more likely to cause an outbreak of disease than its pasteurized counterpart.

    Like dairy products, juices and ciders need to be pasteurized to ensure they are free of harmful bacteria and safe for consumption. Again, these foods are at risk of carrying bacteria that can lead to foodborne illness. To address this risk, the Food and Drug Administration published a rule in 2001 that required businesses to create and implement Juice Hazard Analysis and Critical Control Point systems. These systems follow specific rules about how to pasteurize various types of juices and purees made from fruits and vegetables.

    Pasteurization, for any of these products, entails heating up the product to a high enough temperature that will kill off any harmful bacteria. For juices and purees, this temperature is between 160 and 180 degrees, depending on how long the pasteurization process lasts, according to Pennsylvania State University. The quicker the process, the higher the temperature needs to be. For instance, if a processor decides to heat the juice to 160 degrees, it would take at least six seconds for pasteurization, but only 0.3 seconds at 180 degrees.

    Dairy products take much longer to pasteurize. According to Milk Facts, a batch of milk is usually heated to 145 degrees for 30 minutes, though depending on the dairy product and the length of time of pasteurization, the temperature varies.


    Beyond producing food and beverages, the agriculture industry is also key in creating biofuels to use as alternative fuel options. According to the National Renewable Energy Laboratory, biofuels are primarily made of either biodiesel or ethanol.

    “Shell and tube heat exchangers are used in the distillation of biofuels.”

    Ethanol is made in a fermentation process using starches and sugars. However, industry professionals are working to find ways to use cellulose and hemicellulose in its production. Most plant matter is made of these fibrous materials. Biodiesel is made of a combination of methanol and a fat, like cooking grease or vegetable oil. Biodiesel is sometimes used to reduce vehicle emissions.

    Shell and tube heat exchangers can be used in the distillation of these biofuels. According to Biodiesel Magazine, biofuels can be distilled to remove high sulfur content or to change the color of the product.

    Research and development brought the agriculture industry these advancements and will bring many more. For information about how a shell and tube heat exchanger can better your business, contact the experts at Enerquip today.

  2. Oil and gas industry to drive heat exchanger market in coming years

    Leave a Comment

    The oil and gas industry has been advancing the heat exchanger market in various capacities, according to several reports recently published.

    MarketsandMarkets explains that heat exchangers are an integral part of the petrochemical and oil and gas industry. The chemical industry is the most influential driver of heat exchanger business.

    Get cracking

    The global market for oil and gas equipment is expected to continue to grow to be worth $35.8 billion by the year 2022, according to Transparency Market Research.

    Oil and gas equipment can be categorized in two parts: rotating and static equipment. Rotating equipment is comprised of valves, pumps and turbines, while static equipment includes valves, furnaces, boilers and heat exchangers.

    “Cracking is the process of breaking the hydrocarbons into smaller pieces.”

    Heat exchangers play an important role in processing oil and gas. They are used in the refining process in cracking units as well as in the liquefaction of natural gas. Cracking is the process of breaking the hydrocarbons that compose crude oil into smaller pieces, according to Chemguide.

    Cracking takes place after the first round of distillation. Then, lubrication and heavy gas oils go through a cracking process. After cracking, a second round of distillation separates the pieces into groups. TechNavio says that heat exchangers come into play to separate oil from any water that is produced during the process.

    The BBC explains that cracking is a thermal decomposition reaction, which means heat is used to break apart the hydrocarbons. Once the hydrocarbons are in smaller, more applicable pieces, they can be used to make fuels and polymers.

    Still distilling

    A report by the American Chemical Society explains that heat exchangers are also used in the diabatic distillation process. This process occurs when heat is transferred through a reboiler as well as inside the distillation column.

    Part of the process involves pushing water through a series of trays to cool off the oil. Another portion circulates steam from the reboilers through a series of trays as well. Each tray has a heat exchanger. Introducing heat exchangers to the process has made it faster and more efficient, because they allow the reboiler to reach a higher temperature faster. Heat exchangers also help the condensers to cool faster.

    Heating up

    According to TechNavio, the oil and gas industry is also boosting the global waste heat recovery market. It is expected to grow 7.6 percent by 2019. Waste heat recovery is primarily done through the use of heat exchangers and other equipment such as turbines and industrial heating boilers.

    “Between 20 and 50 percent of industrial energy output is wasted.”

    A report from the World Economic Forum said up to half of industrial energy input is wasted. The way to utilize this wasted energy is through waste heat recovery. A U.S. Department of Industry report stated the converted heat can usually be used for generating electricity, heating and absorption cooling. Heat exchangers in this process are typically most useful for preheating air before it enters a furnace system. This takes some of the stress away from the furnace, allowing it to use less fuel and energy to heat the air itself.

    The World Economic Forum reported governments and industries around the world begin to make environmentally friendly changes, and many have focused on striking a balance between three concepts: energy security, energy affordability and environmental sustainability. Large industries, such as oil and gas, have especially been looking into ways to achieve an ideal energy triangle.

    According to the Department of Industry, low-temperature heat recovery, which is identified as being between 100 and 400 degrees, can use shell and tube heat exchangers to condense water vapor in the discharged gases.

    In a report, Research and Markets explains that government regulations on greenhouse gas emissions have inspired the use of heat exchangers and other heat recovery equipment. Reusing wasted heat not only cuts down on emissions, but also reduces the amount of fuel needed to run oil and gas facilities. The report predicts that continued regulations on how environmentally friendly facilities need to be will keep driving the need for heat exchangers.

  3. Chemical industry preparing for resurgence in manufacturing

    Leave a Comment
    Chemical manufacturing Chemical manufacturing is on the rise in the U.S. due to affordable energy.

    The chemical industry is quickly becoming one of the nation’s most predominant manufacturing sectors due to affordable energy prices. A report from the analysis firm Boston Consulting Group explained that with steady production due to hydraulic fracturing and affordable labor costs, the chemical industry has been able to take advantage of these trends.

    Currently, the U.S. chemical industry is worth roughly $800 billion, according to the American Chemistry Council. But, experts at BCG believe the value of the industry could increase by $11 billion to $21 billion by 2025. The firm is calling the chemical manufacturing boom “a once-in-a-generation renaissance” for North America.

    Shale boom boosting chemical production

    U.S. chemical manufacturers have seen the recent success in production due to the shale boom and availability of low-cost natural gas and liquid natural gas resources. With advancements in fracking technology, the oil and gas industry has completely revamped U.S. production, making it nearly sustainable on domestic resources.

    However, the success of fracking technology has bled over into other industries, and more specifically, into chemical manufacturing. Now, chemical manufacturers are able to reevaluate their production methods with cheaper energy and labor rates.

    BCG analysts said from 2010 to 2015, within the height of the shale boom, the U.S. chemical industry gained more than $130 billion in capital investments due to natural gas production.

    Rejuvenating chemical manufacturing processes

    With the excess of natural gas and LNG resources, the chemical industry is now able to revitalize its production and manufacturing processes. According to the BCG report, chemical companies will now be able to focus on core business issues such as investing in updated equipment.

    One area of manufacturing equipment that chemical processors rely on is chemical shell and tube heat exchangers. According to a press release from MicroMarket Monitor, the heat exchanger market is expected to rise at a compound annual growth rate of 6.4 percent from 2014 to 2019 in North America. The U.S. will account for roughly 80 percent of the new heat exchangers purchased in North America.

    The primary reason for this uptick in the heat exchanger market is the nation’s chemical industry, which accounts for almost 40 percent of the North American heat exchanger market.

    Additionally, the ACC reported the chemical industry in the U.S. would likely see a 3.2 percent growth in 2015 and another 3 percent in 2016. That type of growth would exceed the entire U.S. economy for the next couple of years with a 5 percent range expected between 2017 and 2019.

    The ACC also believes consumers will see a significant drop in energy bills by as much as 5 percent for 2015. While the production of natural gas is helping consumers, it ultimately leads back to the major chemical producers who can now invest in new technology to keep production levels high.

    Using stainless steel shell and tube heat exchangers could reduce fouling and other downtime issues within the chemical processing stage.