Skip to Content
Exit

Tag Archive: CIP Heater

  1. Process Cooling: The Salsa Cooling Challenge

    Leave a Comment

    A custom heat exchanger design allows a salsa manufacturer to effectively complete process cooling of the product and expeditiously clean-in-place between batches and shifts.

    California-based Southwest Thermal Technology was approached by one of its OEM customers to provide a shell-and-tube cooler to chill a client’s salsa prior to bottling. The request was more challenging than it sounds.

    The Challenge

    Because of the viscosity of the salsa — around 2,000 cP while warm and much thicker at 9,165 cP when cooled — turbulent flow was extremely difficult to achieve in the tubes of a shell-and-tube heat exchanger. The viscous salsa hindered efficient heat transfer. Typically, this situation is addressed by using a heat exchanger with more surface area while using a high volume of cooling water on the shell side of the heat exchanger. Such a design could achieve process cooling from 200 to 120°F (93 to 49°C).

    Southwest Thermal Technology wondered whether a more compact solution was possible. That’s when they reached out to Enerquip.

    After reviewing the problem, the engineers at Enerquip first considered a single, large heat exchanger that would perform well thermally. But the single large exchanger would be difficult to clean with the salsa maker’s clean-in-place (CIP) system. Typically, CIP works best when the cleaning solution can be circulated at 5 ft/sec or more. In a single, large exchanger, this would not be achievable.

    Of course, in food production environments, it is crucial to keep process equipment like shell-and-tube heat exchangers clean and sanitary. Regular CIP cleaning takes place between batches or shifts. This prevents cross-contamination of different products between batches and prevents unwanted bacterial growth that could contaminate food products.

    A New Approach

    The design team at Enerquip then developed a new approach. Process cooling of the salsa would occur by flowing through three smaller heat exchangers stacked in series. The salsa would pass from one heat exchanger to the next traveling through a sanitary jumper, which connected the outlet of the first exchanger to the inlet of the second exchanger, and likewise for the second-to-third exchanger connection. Meanwhile, the cooling water would flow counter-current from shell to shell, starting in the third exchanger, flowing through the second exchanger, and finally through the shell of the first unit.

    To realize this process cooling solution, three unique shell designs were created. They allowed the connecting flanges between each shell to be bolted together for the chilled water flow. Tube-side connections included an additional CIP connection on the first bonnet for the inlet and on the last bonnet for the outlet. CIP flow through the other bonnets used the jumper connections for the salsa to further reduce the piping costs and complexity.

    Enerquip Salsa Coolers – Stacked Set

    This design allowed for more efficient process cooling. In addition, the reduced exchanger size allowed the units to be cleaned effectively using the customer’s CIP system at 5 ft/sec flow through the tubes.

    Enerquip Salsa Cooler Enerquip Salsa Cooler

    Because of the acidity of the salsa, the salsa maker opted to use a higher stainless alloy for the tubes and other product-contact surfaces of the exchangers. While more expensive, super-austenitic stainless steel is more resistant to corrosion from acids and cleaning solutions.

    Another benefit of the three smaller, stacked exchangers over one larger exchanger was risk avoidance. If there was ever a tube failure in the single large exchanger, the customer would potentially be shut down completely during a repair, and the entire tube chest would need to be replaced. This would take months to achieve due to the lead-time on super-austenitic tubing. By using three smaller shell-and-tube heat exchangers in series, the salsa maker has equipment redundancy. Any of the units can be temporarily bypassed if there were a tube failure. Replacement of a smaller tube chest would be less than the cost of a single, larger one.

    Through this approach, the salsa maker was able to get more consistent process cooling and meet all the sanitary requirements for cleaning their equipment. As an added benefit, the company gained flexibility and redundancy while minimizing the risk of costly downtime.

    Article published in Process Cooling magazine: July 2019.

    Jim Peterson, Enerquip Sales Engineer

    Article Author: Jim Peterson, Enerquip Sales Engineer

    sales@enerquip.com

  2. Sani-Matic Testimonial of Enerquip Heat Exchangers

    Leave a Comment

    Sani-Matic shares why having a quality partnership with Enerquip means so much for their business. “We consider Enerquip a leader in their product range.” – Aaron Zell, President & CEO of Sani-Matic. “We can count on Enerquip – they do what they say they’re going to do. All foundations are built on trust and we have that firmly in place with Enerquip.”

    Subscribe to our YouTube page

    Opening an Enerquip Bundle
  3. Maintaining your shell and tube heat exchanger

    Leave a Comment

    Your shell and tube heat exchanger could be one of the most important pieces of equipment in your business. In the food, beverage and dairy industries, a heat exchanger will protect customers from contaminated products. The pharmaceutical industry relies on heat exchangers to ensure medicines are top quality.

    If a heat exchanger fails, product is contaminated and lost. This could decrease productivity, and in some cases, could result in a reputation-damaging recall. To prevent failure, it is critical that the heat exchanger is reviewed and serviced regularly. Chemical Engineering Magazine explained that, without proper maintenance, heat exchangers are prone to corrosion and fouling, which could lead to leaks. This will cause the product to mix with the cooling or heating fluid and ruin the batch. Corrosion and other deposits collecting on the floor of the exchanger will decrease the efficiency of the exchanger. This could prevent the liquid from reaching the desired temperature.

    “If a heat exchanger fails, product is lost or contaminated.”

    Corrosion leads to bigger problems

    A shell and tube heat exchanger is a machine that is expected to have to be repaired or replaced eventually. The nature of its use will wear on it and eventually, corrosion will occur. The goal is to keep the exchanger in operation as long as possible. According to MTS Systems Corporation, a heat exchanger could last up to 20 years with the right maintenance. This includes careful, regular inspections of the machine and all its parts.

    MTS said it is important to make sure the heat exchanger is sanitary from the beginning of its life to the end. Before the first use, be sure to look it over thoroughly to make sure everything is secured properly and the tubes and shell have not been contaminated by dirt, dust or other foreign substances.

    Corrosion is a process that occurs over time regardless of proper maintenance schedules. It is the result of chemical reactions in or around the heat exchanger. Different metals will react with different substances differently. Stainless steel is a good material to use in exchangers when the substances used within could be harmful to other metals, such as copper alloys. According to the Stainless Steel Information Center, the material can resist corrosion from most acidic, alkaline and chlorinated substances when it is a high-alloy grade. However, the British Stainless Steel Corporation explained that while the metal is highly resistant to corrosion, it will begin to wear over time.

    “Stainless steel is resistant to corrosion from many substances.”

    Water monitoring

    MTS explained the best way to prevent corrosion is to make sure only the best substances for the exchanger’s material makeup enter the machine. Using the correct chemicals to treat and clean the tubes is essential. This information should be obtained before you begin using your heat exchanger to ensure you are prepared for its maintenance from the get-go.

    Many heat exchangers use water as the heat transfer liquid. Tap water is generally of an acceptable quality to use in the machine. However, it is important to double check the water before putting it into the exchanger. The pH should be neutral and the water shouldn’t be polluted or have any bacteria or other contaminates in it. If the water comes from a natural source, is should be treated before entering the tubes.

    If the water isn’t treated or inspected before entering the exchanger, debris could enter the machine and block the chambers. To prevent this from happening, screens or filters can be installed to keep particles out. If they do enter, they will wear against the tubes and cause corrosion.

    Monitoring the health of your heat exchanger will help to identify early signs of failure before fouling or contamination become a larger issue. MTS explained that checking on the water quality is a good way to see if failure is a risk or is already happening. Cloudy water indicates the fluid is no longer pure. Taking notes on temperature and pressure changes will reveal problems beginning to form. Reduced efficiency could be a sign of scaling, a solid precipitate resulting from chemical reactions. Scale build-up will lead to fouling and corrosion over time. Checking other aspects of the exchanger, such as tube thickness, will also give indications of emerging problems.

    If you find that you need to replace all or part of your heat exchanger, contact the helpful heat exchanger experts at Enerquip who specialize in designing custom shell and tube heat exchangers, and drop-in replacement exchangers.