Skip to Content
Exit

Tag Archive: Sanitary Equipment

  1. Tips for preventing food recalls from your production facility

    Leave a Comment

    As a food production company, it’s your responsibility to ensure the products you ship from your facility are in good condition and safe for consumers.

    A few aspects of this are ensuring your process is designed to prevent and detect potential contamination, and that your equipment is adequate for the job and thoroughly cleaned.

    Prevent Food Recalls: Why is it Important?

    Mistakes can happen. Food products are recalled on a regular basis. Often, recalls have to do with undeclared allergens. Other times, contamination can lead to a dangerous situation that prompts a recall. Some of the most common foodborne illness-causing organisms include:

    • E. coli.
    • Listeria monocytogenes.
    • Salmonella.

    These organisms can cause severe illness or even death, and may be found in food or dairy products that aren’t properly prepared. An estimated 1 in 6 Americans contract a foodborne illness annually, according to the U.S. Food and Drug Administration.

    It’s always important for companies to actively work to prevent food recalls, reduce the risk of food contamination, and report dangerous products as soon as they’re discovered.

    Food recalls are not only dangerous to consumers, but can also cost a business time, money and reputation. The average cost of a single product recall is $10 million, according to a study from The Grocery Manufacturers Association, Food Marketing Institute, Deloitte and GS1 US. That’s before lost sales and brand damage are taken into account.

    Prevent Food Recalls through Process Review

    If your process doesn’t support sanitary food production, you’ll always be at risk of a contamination. Since the FDA Food Safety Modernization Act came into effect, all companies who work with food products have completed a thorough process and equipment review and made any necessary changes where the operation put product at risk of contamination.

    Reviewing your process shouldn’t be a one-time task. It’s important to periodically review your systems and identify potential areas to improve. Vulnerability assessments can show you areas where your operations are most at risk.

    Regular inspections should be carried out, even during busy periods. During fast-paced production times, inspections may consist of simple visual reviews, which is fine in the short term. However, it’s important to follow these less detailed inspections with a more in-depth analysis later on.

    Investing in Sanitary Equipment

    The equipment you use plays a key role in product safety. There are two major factors that contribute to sanitary equipment: the features of the equipment itself (including materials and construction), and the continued maintenance and cleaning of them.

    Some basic sanitary equipment design principles include having smooth surfaces and rounded edges so product doesn’t get stuck in sharp corners, Food Quality and Safety noted. Equipment that’s easy to clean is also important.

    Stainless steel shell and tube heat exchangers meet these requirements. Here are a few options to consider:

    • Straight tube designs have virtually no corners where product can get trapped and foul, and they’re simple to clean.
    • U-tube models are a little bit trickier, but the rounded bend can be cleaned with the right process and equipment. Stainless steel in particular is a sanitary material because it’s resistant to contamination and fouling and is easy to clean.
    • Cleaning in Place is a technique that allows for thorough cleaning without disassembling equipment or wasted water. CIP systems use shell and tube heat exchangers to run water, steam and/or cleaning chemicals through the equipment, recycling the liquid when it’s complete. CIP is both an effective and environmentally friendly way to keep equipment clean.

    Choosing a Sanitary Shell and Tube Heat Exchanger

    Just like it’s important to note the quality of standards of your food vendors, it’s equally critical to work with an equipment supplier that can be trusted to provide high-quality sanitary equipment. Your process is only as safe as your equipment allows.

    Cross-contamination is a common concern in food processing facilities, but it’s also possible for your equipment to be affected by cross-contamination if it comes into contact with materials that aren’t meant to be food grade, such as carbon steel. Enerquip takes cross-contamination concerns seriously, which is why their engineers don’t work with carbon steel. Additionally, your equipment can be constructed according to 3-A requirements and other sanitary regulations.

    Enerquip’s heat exchanger surfaces that will come in contact with products have surface finishes of 32Ra, though they can provide higher polished or electro-polished surfaces for hygienic applications.

    To learn more about Enerquip’s custom shell and tube heat exchanger design process, reach out to our helpful heat exchange experts. We’ll talk through your process and determine your unique needs to provide you the best unit for your company, to help you prevent food recalls and product contamination.

    More from the Enerquip Blog

  2. Five Important Qualities to Look for in Pharmaceutical Process Equipment

    Leave a Comment

    In recent decades, there has been a notable surge in regulations and oversight pertaining to pharmaceutical manufacturers. This heightened scrutiny has resulted in stricter design specifications for process equipment. Notably, pharma-grade shell and tube heat exchangers must adhere to stringent criteria. These criteria include ease of cleaning, compatibility with appropriate heat transfer fluids, resistance to contamination and corrosion, and overall reliability. Let’s delve further into why these factors are crucial.

    Five Necessary Features of Pharma-Grade Shell and Tube Heat Exchangers

    1. Easily Cleaned

    Pharmaceutical products must be as pure as possible, and one step in achieving maximum purity is using clean equipment. Residue remaining from the previous batch or product type can taint the next round of product.

    Any amount of product left behind that could feasibly be removed through normal cleaning methods should not be present in equipment before production begins, according to the U.S. Food & Drug Administration’s Current Good Manufacturing Practices.

    Instruments that test for cleanliness today are highly accurate, able to detect even tiny amounts of residue. As such, it’s not always feasible to clean equipment to the point where absolutely no amount of previous product is detected. However, it’s always best to clean as thoroughly as possible.

    Choosing equipment that’s easily cleaned is a good step toward ensuring product batches are as pure as possible. Certain configurations of shell and tube heat exchangers are more easily cleaned than others. For example, straight tube exchangers are often easier to clean than U-tube style exchangers because there are no bends to maneuver around.

    Drainability can affect how easy it is to clean a shell and tube heat exchanger. If it’s hard to get the last ounces of liquid out of an exchanger, it’s harder to rid the equipment of all traces of the fluids. Exchangers that are designed to promote drainability, such as those offered by Enerquip, are best for this purpose.

    2.Compatible Heat Transfer Fluid

    Your equipment needs to be compatible with the substances that will pass through it – both on the tube side and the shell side. The heat transfer fluid used plays a large role in how effective the heating or cooling process is, as well as how well the equipment will hold up in time.

    Fluids that aren’t effective for heat transfer will require a longer process time and more energy to run. Additionally, fluids that can be corrosive can cause equipment to wear out faster. Some fluids are flammable, creating potential risks in the work environment if products or equipment are mishandled.

    3. Leak-Free

    Enerquip Double Tubesheet DesignNo manufacturer or equipment operator wants to have leaks. But for pharmaceutical processing equipment, leaks are particularly troublesome. Leaks create the possibility of product contamination, as well as corrosion or other chemical reactions that may occur when process and utility fluids mix.

    One way to reduce the risk of leaks is with a fully welded tubesheet. Another method to minimize the risk of leaks – or at least the negative impacts of them – is to design an external leak path to prevent any possible leakage from interacting with the fluid on the opposite side of the exchanger.

    Shell and tube heat exchangers constructed with double tube sheets are designed to drain any leakage away from the exchanger to minimize the chances of cross-contamination. At the same time, the operator is alerted to the problem so he or she can address it promptly.

    4. Resistant to Contamination and Corrosion

    Equipment used to create any product should not pose any risk of contamination. However, avoiding contamination means different things for different industries, processes and products.

    To minimize the risk of contamination as much as possible, equipment used for pharmaceutical production should be pharma-grade. Enerquip’s high purity exchangers are ideal for this industry. Our knowledgeable heat exchanger experts have ample experience fabricating shell and tube heat exchangers for pharmaceutical purposes, and are even used by companies like Bristol-Myers Squibb, Pfizer and Unilever.

    Corrosion-resistant materials also help to lower the risk of product contamination. Corrosion can be caused by chemical or physical processes, and the residue that emerges through this process can be reactive or can put the purity of the product at risk. Stainless steel and stainless-steel alloys are highly resistant to corrosion, making them smart choices for pharmaceutical construction.

    5. Highly Dependable

    All manufacturers, regardless of industry, strive to reduce or eliminate downtime. Every minute of downtime has a real impact on the company’s bottom line.

    Choosing reliable equipment is one of the most effective ways to reduce downtime. The less frequently equipment requires maintenance or spare parts, the more often it’s contributing to your facility’s production.

    Enerquip prides itself on fabricating equipment that is long-lasting and can be counted on. To learn more about choosing the right pharmaceutical process equipment for your facility, contact us today.

    More From the Enerquip Blog

    Editor’s note: This content was originally published in 2018 but was updated in 2024.

  3. Exchanger System Helps Food Packager Put the Soup On

    Leave a Comment

    A mechanical contractor for a Chicago-based liquid-foods packager had an interesting and challenging cooling application. An important client planned to award the foods packager a large contract for packaging soup if they could satisfy one stipulation: The company had to guarantee that the product would be cooled from 198°F (92°C) to precisely 77°F (25°C) before packaging.

    In addition to the tight temperature requirements, process flexibility was required. The contract was for various types of soups, so the packager had to be able to cool products having different thermal properties. At the same time, the packager needed to be able to clean the system easily between batches to avoid any carry-over from different soup types. The cooling point had to be met precisely. If the soups were too warm when packaged, spoilage potentially could occur. If they were too cool during packaging, the containers could sweat, and the labels would not properly adhere to the packages.

    In addition, the packager had to accomplish this within a physical area with space limitations. The entire cooling system had to fit within a 14-by-6’ footprint and fit under a 12’ ceiling. Additionally, in order to minimize utility costs, the packager wanted to take advantage of ambient water from their cooling tower to perform the bulk of the cooling. A glycol/water mix through a chiller would be used for final cooling. Another factor considered in the design was the requirement for a sanitary food-grade system that met the 3-A sanitary standards for polished surface finishes and cleanability.

    Dual-Stage Heat Exchanger Design Selected

    After exploring the options, the food packager selected a designer of shell-and-tube heat exchanger systems. Often when designing shell-and-tube heat exchangers, multiple configurations can perform the duty requested. The best design is selected based on surface area, utility service provided, regulatory preferences and customer priorities. Working together in a collaborative process, the heat exchanger designer and food packager pursued the best option balancing all of the conditions.

    In order to provide a fairly simple solution, the first design presented was for a pair of 24” by 10’ long BEM-style straight tube exchangers in series. The soup product would flow through the tubes of the first exchanger while being cooled by cooling tower water in the shell. After the first exchanger, the soup would flow through the tubes of the second exchanger while being cooled by 45°F (7°C) glycol/water mix in the second shell. Both exchangers were inclined to allow the units to drain out when not in use between batches. The two heat exchangers were designed with davit swing-arm assemblies to help facilitate removal of the bonnets for periodic inspection and manual cleaning when needed.

    This dual exchanger approach, despite the advantage of simplicity, had several drawbacks. First, the cooling performed in the first exchanger was limited to the temperature that the cooling tower water was being heated to on the shell side. In other words, when the soup entering the exchanger at 198°F (92°C) met the cooling tower water entering the shell at 70°F (21°C), it heated up the cooling tower water to around 120°F (49°C). The soup could not be cooled below this level of 120°F (49°C), which is known as the temperature cross or temperature pinch. This would then put most of the burden on the glycol/water chiller to perform the bulk of the cooling, requiring a larger and more expensive chiller unit.

    The other issue that presented itself was the ability to completely clean the unit between batches of product. Although the exchanger could be cleaned by backflushing the tubes with water and cleaning solution, there was no way to accelerate the wash water to the preferred velocity (5 ft/sec) needed for adequate cleaning. This was limited by the size of the onsite cleaning clean-in-place (CIP) system (200 gal/min). With the sheer size of the exchangers and number of tubes, it would have taken a CIP system using 1,500 gal/min to reach the proper cleaning velocity. These factors led to a redesign to a more complex yet more effective solution.

    In order to allow for a smaller tube field that would provide the 5 ft/sec velocity for cleaning, the exchanger diameter was reduced from 24” to 6”. Because of the reduction in surface area per heat exchanger, it was necessary to add more exchangers to the set. The first, large unit being cooled by the cooling tower water was replaced by six smaller exchangers. For the final cooling utilizing the chiller, the larger exchanger was replaced by two of the smaller units.

    As the design simulations unfolded, other benefits started to show themselves. By restricting the flow of the product to a smaller number of tubes, the velocity of the product also increased. This improved the heat transfer when cooling the soup product. It also allowed the cooling tower water to be split into a fresh stream flowing into each of the six shells, avoiding the temperature cross experienced in the larger unit. During winter months, when their cooling water was colder than 70°F (21°C), it was possible to shut down the glycol/water chiller and perform all of the cooling with just cooling tower water, saving utility costs.

    The smaller diameter exchangers were easier to construct and polish to meet the 3-A sanitary requirements. They were efficient to clean using the onsite CIP system, and they were simpler to take apart to inspect due to the smaller, lighter bonnets on each exchanger.

    The eight exchangers were stacked on a custom rack with all of the interconnecting product jumpers, utility piping and the contractor’s manual valves. During design, it was decided to leave enough space to mount two more of the same size exchangers on the rack, allowing for future growth in batch size, or for tough-to-cool products requiring more surface area. The units were all pitched slightly to allow for full draining of the product and cleaning fluids from the tubes. Another advantage was that spare parts like gaskets and tri-clamps were less expensive and more readily available for the smaller exchangers than with the two original, large exchangers. An added bonus is that the parts are interchangeable between the eight exchangers in the set.

    The new system of stacked heat exchangers in series still fit within the packager’s space limitations, and it ended up costing about the same as the two larger custom units. This allowed the food package to stay within the budget and timeline for the project. The stacked set approach of smaller heat exchangers in series performed consistently. This allowed the packager to win the contract while enjoying the benefits of lower utility costs, increased regulatory compliance and automation of the maintenance process for the system.

  4. Preventing Cross Contamination in Your shell and tube heat exchangers

    Leave a Comment

    Cross contamination is a shared concern at all stages of the food industry. Chefs need to make sure their fresh veggies are kept away from their raw meat; storage facilities strive to keep common allergenic foods like nuts separate from other ingredients; and food production plants must ensure products sent through their process equipment isn’t affected by harmful bacteria, chemicals or other items.

    Shell and tube heat exchangers are popular in food production plants as a method to pasteurize fruit, vegetable or dairy products, or to achieve a desirable consistency, as in honey or maple syrup production. Cross contamination is also a risk factor in industries like pharmaceuticals and personal care.

    It’s important that these important pieces of equipment don’t contribute to any form of cross contamination. If this were to occur, it could reduce plant efficiency, lead to a ruined batch of product or necessitate a recall. There are many different ways to reduce the chances of cross contamination in your food or pharmaceutical production facility. Here are a few:

    Work with quality equipment fabricators

    The materials used in the construction of your shell and tube heat exchangers play an important role in the quality, sanitation, cleaning requirements and lifespan of your equipment. Many food industry companies turn to stainless steel for its fouling resistance.

    Choosing a stainless steel shell and tube heat exchanger is therefore a good step toward preventing cross contamination in your facility. However, you can take this one step further by finding out what sort of environment in which your shell and tube heat exchanger is fabricated.

    Cross contamination isn’t just limited to food items; you can also cross-contaminate metals. As such, it’s worthwhile to find out if your stainless steel shell and tube heat exchanger is being made in a facility that also utilizes carbon steel. If it is, there’s always a chance that this metal, which is more prone to fouling, can contaminate your equipment.

    At Enerquip, we value the integrity of stainless steel, which is why we don’t work with carbon steel. When you receive one of our heat exchangers, you can feel confident that it hasn’t been affected by this metal.

    Strategically choose your tubes

    When cross contamination does occur in a shell and tube heat exchanger, it may be caused by the shell-side fluid mixing with the tube-side fluid. To prevent this from happening, added barriers or an adjusted tube design can help.

    Enerquip’s high purity shell and tube heat exchangers are fitted with double tubesheets, which reduces the risk of cross contamination of this type. These custom and standard pharma-grade exchangers are particularly useful for pharmaceutical, nutraceutical, animal health and personal care industries.

    Double tube sheet configurations typically have a form of leak detection installed in the exchanger. If a leak were to occur in these models, the fluid should drain away from the exchanger and into a safety container rather than mixing with the other fluid, and alerts the operator that there is an issue to repair.

    Understand pressure differentials

    The engineers who create shell and tube heat exchangers must understand many complex formulas to know how the equipment will behave once it’s put to use. The pressure differential, or the difference between the pressures inside the exchanger, is an important one that relates to the likelihood of cross contamination. Typically, the pressure on the shellside would be less than inside the tubes. That way, if a leak springs, the product will flow into the heat transfer medium, rather than the medium mixing into the product and entering the tubes. This helps to keep the negative effects of a cross contamination incident as low as possible.

    Regular inspections and cleaning

    If there’s a chance of cross contamination in your equipment, it’s best to know sooner than later. Periodic visual inspections is the first step in identifying weak points and emerging problems that could lead to contamination, Business Standard pointed out. In your inspections, you might see early signs of leaks in your tubesheet or gaskets. If you catch this early, you may be able to replace or repair the damage before it leads to mixing fluids.

    You may also see early signs of fouling. If fouling is allowed to continue for too long, it can lead to spoiled product. If you do, you’ll want to clean the exchanger and determine whether you can make any changes to your process to prevent fouling. This might mean exploring new options for heat transfer fluids, cleaning more frequently or changing your sanitation methods.

    Whether you’ve experienced cross contamination at your facility or simply want to ensure you’re doing everything you can to prevent it, strategically choosing your shell and tube heat exchanger and making sure it’s kept in good condition can go a long way to help your efforts.

    To learn about Enerquip’s stainless steel shell and tube heat exchangers, reach out to our knowledgeable engineers.
  5. Food Processing and Holiday Favorites

    Leave a Comment

    Do you know how food processing comes into play with your holiday favorites? The holiday season is marked by traditions, like family gatherings, gift-giving and, of course, seasonal foods people look forward to all year round. Treats like pumpkin pie, eggnog and cranberry sauce bring back memories of holiday feasts and large gatherings for many people. But do you know what it takes to place these traditional dishes on your table?

    Food processing and holiday favorites… here’s how these favorite wintertime dishes are processed:

    Eggnog

    Milk products sold in the U.S. must be pasteurized before being packaged and stocked on store shelves. Pasteurization is the process of heating the product to a temperature and for a length of time known to kill harmful organisms like E. coli, salmonella or Coxiella burnetii, which can cause Q fever in humans, according to Milk Facts.

    Eggnog is made by combining eggs with milk or cream. Both the eggs and the milk have the potential to contain dangerous bacteria. To offset the risk, the mixture needs to be heated to either 155 degrees Fahrenheit for 30 minutes for large-batch vat processing, or 175 degrees Fahrenheit for 25 seconds for continuous high-temperature, short-time processing. Eggnog must be pasteurized to ensure it’s free of harmful bacteria.

    Canned pumpkin

    Did you know your pumpkin pie might be more like squash pie? According to the Food & Drug Administration, it’s perfectly acceptable for Cucurbita pepo as well as varieties of Cucurbita maxima to bemixed together in the can of delicious creamy pumpkin puree you poured into your pie shell this winter. The former is commonly called a field pumpkin and isn’t as bright as the jack-o’-lantern you carved for Halloween, while the latter is firm-shelled, golden-fleshed, sweet squash.

    Regardless of what’s technically in the can, there are two truths almost everyone can agree on: pumpkin pie is delicious, and it’s important that the ingredients are prepared safely to prevent foodborne illnesses. An important aspect in implementing controls in processing to prevent bacterial growth is knowing the product’s pH. Different pH levels contribute to varying levels of bacterial growth; lower acidity, found in Low-Acid Canned Foods, generally means the product isn’t required to go through a hazard analysisor be subject to risk-based preventative controls, according to the FDA. Foods that have a final acidity of more than 4.6are considered LACF; since pumpkin averages a pH of 4.9-5.5, it’s considered a LACF.

    A critical distinction between LACFs and high-acidity foods is thepotential for Clostridium botulinum the bacterium that can cause botulism to grow, according to William McGlynn, a food scientist at Oklahoma State University’s Robert M. Kerr Food & Agricultural Products Center. pH levels of less than 4.6 don’t allow for this dangerous spore to grow, which means that LACF’s must undergo intensive heat treatments to kill any spores. Pressure cooking inside the can is one effective way to rid the puree from harmful bacteria.

    As Forbes contributor Nadia Arumugam explained, the journey from field to can is a long onethat involves heavy-duty machinery to wash, sanitize, remove the stem, seeds and pulp, chop, steam, condense and finally mash the squash. Each of these steps is critical in creating that consistent texture you imagine when you think of pumpkin pie.

    Cranberry sauce

    While pumpkin has a low acidity, cranberries fall on the higher end of the scale, with cranberry sauce having an average pH of 2.4 and cranberry juice a pH of 2.3-2.5, according to the Robert M. Kerr Food & Agricultural Products Center. While this may mean Clostridium botulinum has a very low chance of surviving in these environments, other toxins like salmonella can thrive in this level of acidity, and pasteurization is necessary to make sure they’re safe to consume.

    According to the FDA, fruit juices need to either be pasteurized or labeled with a warning messagestating that the product has not gone through a pasteurization processand could be a health risk to consumers, particularly those who have weak immune systems. As is dairy processing, heat pasteurization is a common practice among juices and fruit juice products.

    High-quality equipment matters

    When pasteurizing milk, fruit or vegetable products, it’s not just factors like temperature and process duration that makes a difference, but also the equipment in use. Some materials are naturally less prone to contamination than others.

    Stainless steel is one material that is well-suited for food processing because of its resistance to fouling, corrosion and pitting. Alloys that contain copper, which naturally has antimicrobial properties, can also be good choices for food processing equipment, according to Antimicrobial Copper. As such, stainless steel and copper alloys are commonly used in food processing operations.

    If your food processing plant is in need of new stainless steel shell and tube heat exchangers for your pasteurization process, reach out to the expertsat Enerquip.

  6. Frozen custard is a fan favorite, but must be produced properly

    Leave a Comment
    Frozen custard Frozen custard has specific composition and pasteurization requirements set by the FDA.

    Frozen custard is a sweet treat popular throughout the Midwest. It’s similar to ice cream, but in addition to the cream and the sugar, egg yolk is added to the concoction to create a creamier, richer texture and flavor. The U.S. Food and Drug Administration states that for a frozen dessert to be considered “frozen custard,” it must contain 1.4 percent egg yolk solidsby weight of the final product.

    That minimum is flexible when bulky flavors are added, but once the percentage of egg yolk solids falls below 1.12, the dessert is no longer considered a frozen custard – though it’s still considered delicious by many consumers!

    Safely making frozen custard

    Of course, like any dairy product or food containing egg, it’s important that frozen custard is pasteurized correctly, using the right sanitary shell and tube heat exchangers, before being distributed among frozen custard shops and sold to consumers.

    The FDA has set different requirements for the pasteurization of ice creams and custards than it has for regular milk. Since frozen custard contains higher fat content, milk solids and more sugar or sweetener, it’s a more viscous solution and must be pasteurized at a higher temperature and longer duration than milk. The presence of egg yolk also requires more robust pasteurization conditions.

    Frozen custard should be pasteurized at 180 degrees Fahrenheit for 15 minutes, according to the Journal of Dairy Science.

    After pasteurization, the mixture ishomogenized in a pressurized environmentof between 2,500 and 3,000 psi, Milk Facts explained. This reduces the size of milk fat globules, ensures all emulsifiers and other additions are evenly distributed and overall contributes to a smoother, creamier product.

    Next, the mixture must age for at least four hours. Aging is done at 40 degrees Fahrenheit to prevent freezing while still keeping it at an acceptably low temperature. After aging, liquid flavors and colors may be added.

    Finally, it’s time to freeze. For most frozen custards, though, this step is completed at the point of sale using machines that take in the liquid pasteurized product, pass it through a freezer that continuously mixes the liquid and dispense the product into a dish or cone.

    Sanitary shell and tube heat exchangers for frozen custard production

    To keep a dairy operation sanitary for continued use, it’s important to understand the specific risks of the products being pasteurized in certain equipment. According to research published in Comprehensive Reviews in Food Science and Food Safety, custard products commonly leave behind Bacillus cereus spores

    spores.

    If B. cereus is included in the final product a consumer could become ill, experiencing vomiting or diarrhea. For this reason, it’s critical that shell and tube heat exchangers are always kept clean to prevent fouling and contamination.

    Standard cleaning-in-place systems were found to be effective in keeping equipment sanitary throughout their life time. The CIP process included a six-minute prerinse; a 10-minute NaOH rinse; a six-minute intermediate rinse; a 10-minute HNO3 rinse; and finally, a concluding rinse for six minutes.

    To learn more about the sanitary shell and tube heat exchanger options available to you, reach out to the friendly engineers at Enerquip

  7. Pharmaceutical Manufacturers Must Meet ASME-BPE Standards

    Leave a Comment

    Editor’s note: Content last updated 3/7/24

    In any industry, it’s important to have standards that lay out what consumers expect of the products created by manufacturers and define the processes by which these products can be created. Without standards, consumers may mistakenly purchase a subpar product that does not meet their expectations, leaves them frustrated and damages the manufacturer’s reputation.

    In certain industries, compliance with these standards is absolutely critical. In any market where end users are coming in direct contact with a product or ingesting it – like the food and beverage, dairy or pharmaceutical industries – manufacturers must take every step possible to ensure the final product meets consumer expectations and is safe to consume.

    To ensure that all products are high-quality, there are countless standards that govern many different industries. For example, fabricators of equipment for the dairy industry adhere to 3-A Sanitary Standards, created in the 1920s to ensure that all machinery that came in contact with milk and milk-based products created a sanitary environment.

    Pressing need for pharmaceutical standards

    Where the food, beverage, and dairy industries have excelled in having extensive rules and regulations regarding the environments in which products could be made, the pharmaceutical industry fell short. For many years, there was no 3-A equivalent for biopharma manufacturers that explained what sorts of materials could be used to make equipment or how that equipment needed to be treated or maintained.

    Enerquip Electropolish Finish

    Manufacturers filled the void in their own ways. Some created their own in-house standards to ensure their products would always be consistent. Many turned to the dairy industry’s 3-A standards and applied them to their pharmaceutical operations.

    Though sufficient to keep products sanitary, safe and consistent, the lack of a uniform standard weighed on the industry. After numerous requests, the American Society of Mechanical Engineers collaborated to come up with the ASME-BPE (Bioprocessing Equipment) Standard.

    The standard was first published in 1997 and updated several times since. With it, pharmaceutical manufacturers are better able to communicate their needs to equipment fabricators, collaborate with other companies and stay in line with the U.S. Food and Drug Administration’s policies and current good manufacturing practices.

    ASME-BPE related to heat exchangers

    The ASME-BPE standard covers a wide range of topics, but here are ten important parts related to shell and tube heat exchangers:

    1. Material selection: Heat exchangers should be constructed of materials that are compatible with the process fluid and cleaning solutions, and which meet the purity and quality requirements of the biopharmaceutical industry.
    2. Surface finish: The interior surfaces of heat exchangers should have a smooth, uniform finish that is resistant to corrosion and microbial growth.
    3. Welding and joining: The welding and joining techniques used in the construction of heat exchangers should meet the requirements of the ASME-BPE standard, including orbital welding, electropolishing, and passivation.
    4. Design and construction: Heat exchangers should be designed and constructed in accordance with the requirements of the ASME-BPE standard, including dimensional tolerances, material specifications, and surface finish requirements.
    5. Testing and inspection: Heat exchangers should undergo rigorous testing and inspection to ensure that they meet the quality and performance standards required by the biopharmaceutical industry.
    6. Cleanability: Heat exchangers should be designed and constructed to facilitate thorough cleaning and sterilization, with no dead spots or areas that are difficult to access.
    7. Surface finish measurement: The surface finish of heat exchangers should be measured using appropriate techniques, such as profilometry, to ensure that it meets the required standards.
    8. Gasket and seal materials: The gaskets and seals used in heat exchangers should be constructed of materials that are compatible with the process fluid and cleaning solutions, and which meet the purity and quality requirements of the biopharmaceutical industry.
    9. Pressure testing: Heat exchangers should undergo pressure testing to ensure that they can withstand the operating pressures and temperatures required by the biopharmaceutical process.
    10. Documentation: All aspects of the design, construction, and testing of heat exchangers should be fully documented, with detailed records of materials, processes, and inspections maintained for regulatory compliance and quality assurance purposes.

    Understanding your operation’s needs

    Your operation likely comprises multiple systems and units to produce various products, each with its own unique requirements and features.

    Certain sections of the standards will relate more closely to specific parts of your operation. For instance, your high-sensitivity processes require the strictest adherence to the standards since they come into direct contact with the product. Such processes need highly cleanable surfaces with many requiring electropolished finishes. It is important to choose appropriate materials for not only the interior surfaces but also exterior surfaces.

    In contrast, low-sensitivity processes do not come in contact with the product. Rather, they support the systems that do. Therefore, it is important to carefully fabricate low-sensitivity processes to ensure a sanitary environment. However, these processes do not need to be as high-grade as the ones that directly touch the final product, such as tank jacket systems.

    A seat at the ASME-BPE table

    Preferred equipment suppliers like Enerquip proactively participate in the ASME-BPE committee meetings to help shape the standards that apply to shell and tube heat exchangers. If your pharmaceutical manufacturing operations require new or upgraded shell and tube heat exchangers, we invite you to connect today.

    More from the Enerquip blog